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Introduction Grapheneplasmonics

A Many applications require imaging below the diffraction limit

A Long wavelengths limit conventional mid-infrared imaging to
microscale

A Metamaterial superlenses bypass this limit by preserving near-
field

A Scattering-type scanning near-field optical microscopy (s-SNOM)
beats diffraction limit by ~a/1000 in mid-infrared

A These methods enable investigation of sub-wavelength optical

phenomena e.g. surface plasmons intercalated graphene SiC

A S-SNOM focuses light to sharp oscillating probe tip ~10nm

A Tipactsasfi| i g ht n itnggeatly enldance and localise
Interaction with sample

A Wavelength-independent resolution?

A H,-intercalated graphene
(1LG) is good medium for
traveling plasmons®

A S-SNOM launches
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A Interference of plasmons _ _
A Metamaterial "superlenses" beat diffraction limit, but suffer high modulates s-SNOM signal £ 2
losses m m
A Wide tuneability of QCL
A New high electron mobility design provides stronger anisotropy allows to precisely measure
(Y,> 250) plasmon dispersion from
A Can vary layer thickness ratio d,/d, to tune out-of-plane reflectlon§ at 1LG/SIC
boundaries

dielectric resonance away from losses

A Dispersion curve gives local

A Strong anisotropy provides near diffractionless propagation N
measurement of E-=298N4

A Sub-wavelength imaging (< ay/15) at superlens thicknesses up to meV
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A Super-resolved imaging is fundamental to investigating nanoscale systems L
ondon

A New ultra low-loss superlens design using high mobility materials boosts image propagation by 10x
A Widely tuneable mid-IR s-SNOM can be used to launch and detect plasmons
A Measured plasmon dispersion in graphene to recover local Fermi energy

A Observed tuneable plasmon reflection hotspots from bilayer/monolayer interfaces
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