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Discussion

Summary

 

From our investigation we 
conclude that this plasmon-
driven dimerization can be 
seen as a tandem reaction, 
with at least two significant 
reaction barriers. Without 
excitation, the high reaction 
barrier connected to the 
initial activation prevents 
the reaction. The plasmon 
excitation reduces this first 
barrier. The reaction 
becomes subsequently 
limited by the dimerization 
step. The nanoparticle 
excitation also assists this 
step, by plasmon induced 
heating.  

Plasmonic Heating
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Measuring the particle heating directly is a non-trivial task. We used two methods: Raman thermometry allows to determine 
the temperature of the reactants and particles. XRD is a more direct measurement of the particle temperature. 

Raman thermometry (comparing Sotkes and Anti-Stokes 

scattering) showed a clear temperature increase of T = 200 K for 

the reactant and 350 K for the product at high laser intensities. 

At low intensities no increase was found. The particle 

temperature was estimated at about 150 K.   

Similar particle temperatures were determined by XRD 

measurements. Here we also investigated an often overlooked 

effect: the particle temperature not only depends on the laser 

intensity, but also on spotsize and substrate propoerties, such as 

heat conductivity.

Rate Determining Step [3]

 

 

 

Intensity and Heat [4]
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In summary, we show that both the injection of energetic 
electrons, and plasmonic heating play a significant role in 
plasmon induced coupling reactions. In particular, complex 
reactions can be limited by later steps, in which case an 
optimization of the number of energetic electrons does not lead 
to an improvement of the overall-reaction process. This has to 
be kept in mind for all further optimization steps in the future 
development of plasmon driven chemistry.
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Today, the reaction rates of many plasmon-driven reactions is 
rather low. In particular the reaction times of the 
technologically highly relevant coupling reactions is often in 
the range of tens to hundreds of seconds. In order to increase 
the rates, it is important to not only understand the 
mechanism that initiallizes the reaction, but also the factors 
limiting it. 

Here we investigate on the role of heat on the kinetics of a 
classical plasmon-driven N=N coupling reaction: the 
dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-
dimercaptoazo-benzene (DMAB). Initially, we determined the 
temperature of Au nanoparticles, reactants, and product 
molecules. The observed temperature increase of up to 350 K 
under reaction conditions already imply a non-negligible role 
of heat in this reaction. Moreover, a comparison of the 4-NTP 
dimerization to the dimerization of the more flexible 4-
Nitrobenzylmercaptan (4-NBM) clearly indicates that the 
dimerization and not the electron-driven activation step limits 
the reaction. Finally, by comparing the dependence of the 4-
NTP dimerization kinetics on external heating with its 
dependence on light intensity, we demonstrate that as soon 
as the reactants can be activated, the over-all reaction is 
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The reaction is clearly activated by 
light, as no product could be 
observed by heating the sample for 
30 min under dark conditions, while 
with light immediately (<1s) a 
product peak appears. On the other 
hand, a clear increase of the rate 
with temperature under light 
conditions can be seen.  

The 4-NBM molecule is 
functionally similar to 4-NTP, but 
possess an additional methylene 
group that gives it a higher 
flexibility but also removes it 
further from the gold surface. 
Thus compared to 4-NTP 
electron injection should be 
hindered, while the coupling 
process will improve.

Comparing the reaction kinetics 
at the characteristic product 
wavenumber of 1130 cm-1 shows 
a 2x higher reaction rate for 4-
NBM. Thus not the activation but 
the coupling step limits the 
coupling of 4-NTP. 

The lower rate of 4-NTP can be 
understood in the sense that 
only a part of the consumed 
reactants couple to form the 
DMAB product, such that on 
average 4 reactant molecules 
form one product. For 4-NBM 
nearly all reactant molecules 
convert to the dimer product and 
the conversion factor is 
accordingly around 2.         

Fitting of the reaction kinetics was performed
according to a bi-molecular reaction model. 

KdNBM = 0.14 1/s

KDMAB = 0.05 1/s

All Raman-measurements were performed with micro-Raman setup equipped with a a 785nm laser and a 10x objective (NA = 0.25) 

The consumed reactant is determined from the characteristic 
reactant peak at 1350 cm-1.

The product is normalized to the maximum product signal 
obtained form the fitting.

The reaction rate follows a similar exponential trend, if the temperature or the intensity are 
increased. Indeed if the plasmonic heating measured by Raman thermometry is taken into 
account, the resulting Arrhenius plots show the same activation energy determined by 
plasmonic heating and external heating of the substrate. We therefore conclude that the 
reaction rate is only determined by the reaction temperature.   

4NTP → DMAB

4NBM → dNBM

Raman Thermometry [1] X-Ray Diffraction [2]


