
1. Motivation: Non-radiative decay of plasmons can drive chemistry

Nanostructures made of noble metals such as Au, Ag and Cu
support localized surface plasmon resonances (LSPRs), which
are collective oscillations of their free electrons, driven by
light.1 These surface plasmons decay by locally heating the
nanoparticles, which can drive chemical reactions.2Photothermal 
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Here, we demonstrate how localized photothermal effects can be used to produce spatially-confined nanoreactors
by activating, controlling, and spectroscopically following the growth of individual metal@semiconductor
core@shell nanoparticles.

2. Demonstrating the photothermal activation and nanoscale control of chemical reactions, using a core@shell synthesis 
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This temperature-activated Au@CeO2 core@shell nanoparticle (NP) synthesis occurs at
higher temperatures such as 90 °C in ensemble conditions.3 We perform this synthesis
under photothermal heating of ‘individual’ Au NPs.
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Under irradiation, we observe a red-shift in the LSPR of Au NP due to the growth
of CeO2 shell. Electron microscopy and EDX maps confirm the formation of
Au@CeO2 core@shell NPs. The photothermal shell growth scales with the
nanoparticle temperature.
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Photothermally-grown ceria shell is isotropic in nature, as confirmed by
polarization-dependent scattering spectra on several individual NPs.
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3. In situ tracking of the photothermal growth of nanoparticles
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Real-time tracking of the photoluminescence of the growing core@shell
nanoparticle is useful to study their growth kinetics.

4. Versatility of the technique and substrate patterning

5. Conclusion & Outlook

- Localized temperature gradients produced by plasmonic heating can be exploited to drive
spatially confined chemical reactions.

- Combining our technique with automated particle centering algorithms, one can envisage
fast printing of hierarchical nanoparticles with advanced functionalities over large areas.
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We demonstrate the growth of metal oxides and metal sulfides using photothermal
nanoreactors.
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